Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139330

RESUMO

Serum amyloid A (SAA) is a family of proteins, the plasma levels of which may increase >1000-fold in acute inflammatory states. We investigated the role of SAA in sepsis using mice deficient in all three acute-phase SAA isoforms (SAA-TKO). SAA deficiency significantly increased mortality rates in the three experimental sepsis mouse models: cecal ligation and puncture (CLP), cecal slurry (CS) injection, and lipopolysaccharide (LPS) treatments. SAA-TKO mice had exacerbated lung pathology compared to wild-type (WT) mice after CLP. A bulk RNA sequencing performed on lung tissues excised 24 h after CLP indicated significant enrichment in the expression of genes associated with chemokine production, chemokine and cytokine-mediated signaling, neutrophil chemotaxis, and neutrophil migration in SAA-TKO compared to WT mice. Consistently, myeloperoxidase activity and neutrophil counts were significantly increased in the lungs of septic SAA-TKO mice compared to WT mice. The in vitro treatment of HL-60, neutrophil-like cells, with SAA or SAA bound to a high-density lipoprotein (SAA-HDL), significantly decreased cellular transmigration through laminin-coated membranes compared to untreated cells. Thus, SAA potentially prevents neutrophil transmigration into injured lungs, thus reducing exacerbated tissue injury and mortality. In conclusion, we demonstrate for the first time that endogenous SAA plays a protective role in sepsis, including ameliorating lung injury.


Assuntos
Lesão Pulmonar , Sepse , Animais , Camundongos , Lesão Pulmonar/patologia , Proteína Amiloide A Sérica/genética , Sepse/patologia , Pulmão/patologia , Quimiocinas , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
J Lipid Res ; 64(5): 100365, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37004910

RESUMO

Serum amyloid A (SAA) is predictive of CVD in humans and causes atherosclerosis in mice. SAA has many proatherogenic effects in vitro. However, HDL, the major carrier of SAA in the circulation, masks these effects. The remodeling of HDL by cholesteryl ester transfer protein (CETP) liberates SAA restoring its proinflammatory activity. Here, we investigated whether deficiency of SAA suppresses the previously described proatherogenic effect of CETP. ApoE-/- mice and apoE-/- mice deficient in the three acute-phase isoforms of SAA (SAA1.1, SAA2.1, and SAA3; "apoE-/- SAA-TKO") with and without adeno-associated virus-mediated expression of CETP were studied. There was no effect of CETP expression or SAA genotype on plasma lipids or inflammatory markers. Atherosclerotic lesion area in the aortic arch of apoE-/- mice was 5.9 ± 1.2%; CETP expression significantly increased atherosclerosis in apoE-/- mice (13.1 ± 2.2%). However, atherosclerotic lesion area in the aortic arch of apoE-/- SAA-TKO mice (5.1 ± 1.1%) was not significantly increased by CETP expression (6.2 ± 0.9%). The increased atherosclerosis in apoE-/- mice expressing CETP was associated with markedly increased SAA immunostaining in aortic root sections. Thus, SAA augments the atherogenic effects of CETP, which suggests that inhibiting CETP may be of particular benefit in patients with high SAA.


Assuntos
Aterosclerose , Proteínas de Transferência de Ésteres de Colesterol , Humanos , Camundongos , Animais , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteína Amiloide A Sérica/metabolismo , Aterosclerose/metabolismo , Apolipoproteínas E/metabolismo , Aorta/metabolismo
3.
J Vasc Surg ; 75(4): 1211-1222.e1, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34695550

RESUMO

OBJECTIVE: Abdominal aortic aneurysm (AAA) is a common progressive disease and a significant cause of morbidity and mortality. Prior investigations have shown that diabetes mellitus (DM) may be relatively protective of AAA incidence and growth. The Non-invasive Treatment of Aortic Aneurysm Clinical Trial (N-TA3CT) is a contemporary study of small AAA growth that provides a unique opportunity to validate and explore the effect of DM on AAA. Confirming the effect of DM on AAA growth in this study may present opportunities to explore for clues to potential biologic mechanisms as well as inform current patient management. METHODS: This is a secondary analysis examining the association of diabetes and aneurysm growth within N-TA3CT: a placebo-controlled multicenter trial of doxycycline in 261 patients with AAA maximum transverse diameters (MTDs) between 3.5 and 5 cm. The primary outcome is the change in the MTD from baseline as determined by computed tomography (CT) scans obtained during the trial. Secondary outcome is the growth pattern of the AAA. Baseline characteristics and growth patterns were assessed with t tests (continuous) or χ2 tests (categorical). Unadjusted and adjusted longitudinal analyses were performed with a repeated measures linear mixed model to compare AAA growth rates between patients with and without diabetes. RESULTS: Of 261 patients, 250 subjects had sufficient imaging and were included in this study. There were 56 patients (22.4%) with diabetes and 194 (77.6%) without. Diabetes was associated with higher body mass index and increased rates of hypercholesterolemia and coronary artery disease (P < .05). Diabetes was also associated with increased frequency of treatment for atherosclerosis and hypertension including treatment with statin, angiotensin-converting enzyme inhibitor, angiotensin II receptor blocker, anti-platelet, and diuretic therapy (P < .05). Baseline MTD was not significantly different between those with (4.32 cm) and without DM (4.30 cm). Median growth rate for patients with diabetes was 0.12 cm/y (interquartile range, 0.07-0.22 cm/y) and 0.19 cm/y (interquartile range, 0.12-0.27 cm/y) in patients without DM, which was significantly different on unadjusted analysis (P < .0001). Diabetes remained significantly associated with AAA growth after adjustment for other relevant clinical factors (coef, -0.057; P < .0001). CONCLUSIONS: Patients with diabetes have more than a 35% reduction in the median growth rates of AAA despite more severe concomitant vascular comorbidities and similar initial sizes of aneurysms. This effect persists and remains robust after adjusted analysis; and slower growth rates may delay the time to reach repair threshold. Rapid growth (>0.5 cm/y) is infrequent in patients with DM.


Assuntos
Aneurisma da Aorta Abdominal , Diabetes Mellitus , Hipertensão , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/epidemiologia , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/epidemiologia , Humanos , Fatores de Risco , Tomografia Computadorizada por Raios X
4.
Curr Atheroscler Rep ; 23(2): 7, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33447953

RESUMO

PURPOSE OF REVIEW: Serum amyloid A (SAA) is a highly sensitive acute phase reactant that has been linked to a number of chronic inflammatory diseases. During a systemic inflammatory response, liver-derived SAA is primarily found on high-density lipoprotein (HDL). The purpose of this review is to discuss recent literature addressing the pathophysiological functions of SAA and the significance of its association with HDL. RECENT FINDINGS: Studies in gene-targeted mice establish that SAA contributes to atherosclerosis and some metastatic cancers. Accumulating evidence indicates that the lipidation state of SAA profoundly affects its bioactivities, with lipid-poor, but not HDL-associated, SAA capable of inducing inflammatory responses in vitro and in vivo. Factors that modulate the equilibrium between lipid-free and HDL-associated SAA have been identified. HDL may serve to limit SAA's bioactivities in vivo. Understanding the factors leading to the release of systemic SAA from HDL may provide insights into chronic disease mechanisms.


Assuntos
Aterosclerose , Lipoproteínas HDL , Animais , Aterosclerose/genética , Humanos , Fígado , Camundongos , Proteína Amiloide A Sérica
5.
J Lipid Res ; 61(3): 328-337, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31915139

RESUMO

Liver-derived serum amyloid A (SAA) is present in plasma where it is mainly associated with HDL and from which it is cleared more rapidly than are the other major HDL-associated apolipoproteins. Although evidence suggests that lipid-free and HDL-associated forms of SAA have different activities, the pathways by which SAA associates and disassociates with HDL are poorly understood. In this study, we investigated SAA lipidation by hepatocytes and how this lipidation relates to the formation of nascent HDL particles. We also examined hepatocyte-mediated clearance of lipid-free and HDL-associated SAA. We prepared hepatocytes from mice injected with lipopolysaccharide or an SAA-expressing adenoviral vector. Alternatively, we incubated primary hepatocytes from SAA-deficient mice with purified SAA. We analyzed conditioned media to determine the lipidation status of endogenously produced and exogenously added SAA. Examining the migration of lipidated species, we found that SAA is lipidated and forms nascent particles that are distinct from apoA-I-containing particles and that apoA-I lipidation is unaltered when SAA is overexpressed or added to the cells, indicating that SAA is not incorporated into apoA-I-containing HDL during HDL biogenesis. Like apoA-I formation, generation of SAA-containing particles was dependent on ABCA1, but not on scavenger receptor class B type I. Hepatocytes degraded significantly more SAA than apoA-I. Taken together, our results indicate that SAA's lipidation and metabolism by the liver is independent of apoA-I and that SAA is not incorporated into HDL during HDL biogenesis.


Assuntos
Lipoproteínas HDL/metabolismo , Proteína Amiloide A Sérica/metabolismo , Animais , Apolipoproteína A-I/deficiência , Apolipoproteína A-I/metabolismo , Hepatócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/genética
6.
Nature ; 567(7747): 249-252, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30842658

RESUMO

The liver is the most common site of metastatic disease1. Although this metastatic tropism may reflect the mechanical trapping of circulating tumour cells, liver metastasis is also dependent, at least in part, on the formation of a 'pro-metastatic' niche that supports the spread of tumour cells to the liver2,3. The mechanisms that direct the formation of this niche are poorly understood. Here we show that hepatocytes coordinate myeloid cell accumulation and fibrosis within the liver and, in doing so, increase the susceptibility of the liver to metastatic seeding and outgrowth. During early pancreatic tumorigenesis in mice, hepatocytes show activation of signal transducer and activator of transcription 3 (STAT3) signalling and increased production of serum amyloid A1 and A2 (referred to collectively as SAA). Overexpression of SAA by hepatocytes also occurs in patients with pancreatic and colorectal cancers that have metastasized to the liver, and many patients with locally advanced and metastatic disease show increases in circulating SAA. Activation of STAT3 in hepatocytes and the subsequent production of SAA depend on the release of interleukin 6 (IL-6) into the circulation by non-malignant cells. Genetic ablation or blockade of components of IL-6-STAT3-SAA signalling prevents the establishment of a pro-metastatic niche and inhibits liver metastasis. Our data identify an intercellular network underpinned by hepatocytes that forms the basis of a pro-metastatic niche in the liver, and identify new therapeutic targets.


Assuntos
Hepatócitos/patologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Fígado/patologia , Metástase Neoplásica , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Animais , Carcinoma Ductal Pancreático/patologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/secundário , Feminino , Interleucina-6/metabolismo , Masculino , Camundongos , Fator de Transcrição STAT3/metabolismo , Proteína Amiloide A Sérica/metabolismo
7.
J Biol Chem ; 293(34): 13257-13269, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29976759

RESUMO

Serum amyloid A (SAA) is a high-density apolipoprotein whose plasma levels can increase more than 1000-fold during a severe acute-phase inflammatory response and are more modestly elevated in chronic inflammation. SAA is thought to play important roles in innate immunity, but its biological activities have not been completely delineated. We previously reported that SAA deficiency protects mice from developing abdominal aortic aneurysms (AAAs) induced by chronic angiotensin II (AngII) infusion. Here, we report that SAA is required for AngII-induced increases in interleukin-1ß (IL-1ß), a potent proinflammatory cytokine that is tightly controlled by the Nod-like receptor protein 3 (NLRP3) inflammasome and caspase-1 and has been implicated in both human and mouse AAAs. We determined that purified SAA stimulates IL-1ß secretion in murine J774 and bone marrow-derived macrophages through a mechanism that depends on NLRP3 expression and caspase-1 activity, but is independent of P2X7 nucleotide receptor (P2X7R) activation. Inhibiting reactive oxygen species (ROS) by N-acetyl-l-cysteine or mito-TEMPO and inhibiting activation of cathepsin B by CA-074 blocked SAA-mediated inflammasome activation and IL-1ß secretion. Moreover, inhibiting cellular potassium efflux with glyburide or increasing extracellular potassium also significantly reduced SAA-mediated IL-1ß secretion. Of note, incorporating SAA into high-density lipoprotein (HDL) prior to its use in cell treatments completely abolished its ability to stimulate ROS generation and inflammasome activation. These results provide detailed insights into SAA-mediated IL-1ß production and highlight HDL's role in regulating SAA's proinflammatory effects.


Assuntos
Inflamassomos/metabolismo , Inflamação/imunologia , Lipoproteínas HDL/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/fisiologia , Animais , Caspase 1/metabolismo , Catepsina B/metabolismo , Células HEK293 , Humanos , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína Amiloide A Sérica/genética , Transdução de Sinais
8.
Atherosclerosis ; 268: 32-35, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29175652

RESUMO

BACKGROUND AND AIMS: Serum amyloid A (SAA) predicts cardiovascular events. Overexpression of SAA increases atherosclerosis development; however, deficiency of two of the murine acute phase isoforms, SAA1.1 and SAA2.1, has no effect on atherosclerosis. SAA3 is a pseudogene in humans, but is an expressed acute phase isoform in mice. The goal of this study was to determine if SAA3 affects atherosclerosis in mice. METHODS: ApoE-/- mice were used as the model for all studies. SAA3 was overexpressed by an adeno-associated virus or suppressed using an anti-sense oligonucleotide approach. RESULTS: Over-expression of SAA3 led to a 4-fold increase in atherosclerosis lesion area compared to control mice (p = 0.01). Suppression of SAA3 decreased atherosclerosis in mice genetically deficient in SAA1.1 and SAA2.1 (p < 0.0001). CONCLUSIONS: SAA3 augments atherosclerosis in mice. Our results resolve a previous paradox in the literature and support extensive epidemiological data that SAA is pro-atherogenic.


Assuntos
Aorta/metabolismo , Doenças da Aorta/sangue , Aterosclerose/sangue , Placa Aterosclerótica , Proteína Amiloide A Sérica/metabolismo , Animais , Aorta/patologia , Doenças da Aorta/diagnóstico , Doenças da Aorta/patologia , Doenças da Aorta/prevenção & controle , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/genética
9.
Cell Stem Cell ; 19(1): 38-51, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27292189

RESUMO

The intestinal stem cell niche provides cues that actively maintain gut homeostasis. Dysregulation of these cues may compromise intestinal regeneration upon tissue insult and/or promote tumor growth. Here, we identify secreted phospholipases A2 (sPLA2s) as stem cell niche factors with context-dependent functions in the digestive tract. We show that group IIA sPLA2, a known genetic modifier of mouse intestinal tumorigenesis, is expressed by Paneth cells in the small intestine, while group X sPLA2 is expressed by Paneth/goblet-like cells in the colon. During homeostasis, group IIA/X sPLA2s inhibit Wnt signaling through intracellular activation of Yap1. However, upon inflammation they are secreted into the intestinal lumen, where they promote prostaglandin synthesis and Wnt signaling. Genetic ablation of both sPLA2s improves recovery from inflammation but increases colon cancer susceptibility due to release of their homeostatic Wnt-inhibitory role. This "trade-off" effect suggests sPLA2s have important functions as genetic modifiers of inflammation and colon cancer.


Assuntos
Fosfolipases A2 do Grupo II/metabolismo , Fosfolipases A2 do Grupo X/metabolismo , Homeostase , Inflamação/patologia , Neoplasias Intestinais/enzimologia , Neoplasias Intestinais/patologia , Intestinos/patologia , Nicho de Células-Tronco , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Diferenciação Celular , Linhagem da Célula , Dinoprostona/biossíntese , Inflamação/enzimologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Neoplasias Intestinais/genética , Espaço Intracelular/metabolismo , Camundongos Endogâmicos C57BL , Organoides/metabolismo , Celulas de Paneth/enzimologia , Celulas de Paneth/patologia , Fosfoproteínas/metabolismo , Fosforilação , Células-Tronco/patologia , Via de Sinalização Wnt , Proteínas de Sinalização YAP
10.
Nat Rev Cardiol ; 13(1): 48-60, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26323267

RESUMO

High-density lipoproteins (HDLs) protect against atherosclerosis by removing excess cholesterol from macrophages through the ATP-binding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G1 (ABCG1) pathways involved in reverse cholesterol transport. Factors that impair the availability of functional apolipoproteins or the activities of ABCA1 and ABCG1 could, therefore, strongly influence atherogenesis. HDL also inhibits lipid oxidation, restores endothelial function, exerts anti-inflammatory and antiapoptotic actions, and exerts anti-inflammatory actions in animal models. Such properties could contribute considerably to the capacity of HDL to inhibit atherosclerosis. Systemic and vascular inflammation has been proposed to convert HDL to a dysfunctional form that has impaired antiatherogenic effects. A loss of anti-inflammatory and antioxidative proteins, perhaps in combination with a gain of proinflammatory proteins, might be another important component in rendering HDL dysfunctional. The proinflammatory enzyme myeloperoxidase induces both oxidative modification and nitrosylation of specific residues on plasma and arterial apolipoprotein A-I to render HDL dysfunctional, which results in impaired ABCA1 macrophage transport, the activation of inflammatory pathways, and an increased risk of coronary artery disease. Understanding the features of dysfunctional HDL or apolipoprotein A-I in clinical practice might lead to new diagnostic and therapeutic approaches to atherosclerosis.


Assuntos
Aterosclerose/fisiopatologia , Lipoproteínas HDL/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Complicações do Diabetes/metabolismo , Humanos , Lipoproteínas HDL/genética , Macrófagos/metabolismo , Fumar/efeitos adversos , Fumar/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 35(5): 1156-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25745063

RESUMO

OBJECTIVE: Rupture of abdominal aortic aneurysm (AAA), a major cause of death in the aged population, is characterized by vascular inflammation and matrix degradation. Serum amyloid A (SAA), an acute-phase reactant linked to inflammation and matrix metalloproteinase induction, correlates with aortic dimensions before aneurysm formation in humans. We investigated whether SAA deficiency in mice affects AAA formation during angiotensin II (Ang II) infusion. APPROACH AND RESULTS: Plasma SAA increased ≈60-fold in apoE(-/-) mice 24 hours after intraperitoneal Ang II injection (100 µg/kg; n=4) and ≈15-fold after chronic 28-day Ang II infusion (1000 ng/kg per minute; n=9). AAA incidence and severity after 28-day Ang II infusion was significantly reduced in apoE(-/-) mice lacking both acute-phase SAA isoforms (SAAKO; n=20) compared with apoE(-/-) mice (SAAWT; n=20) as assessed by in vivo ultrasound and ex vivo morphometric analyses, despite a significant increase in systolic blood pressure in SAAKO mice compared with SAAWT mice after Ang II infusion. Atherosclerotic lesion area of the aortic arch was similar in SAAKO and SAAWT mice after 28-day Ang II infusion. Immunostaining detected SAA in AAA tissues of Ang II-infused SAAWT mice that colocalized with macrophages, elastin breaks, and enhanced matrix metalloproteinase activity. Matrix metalloproteinase-2 activity was significantly lower in aortas of SAAKO mice compared with SAAWT mice after 10-day Ang II infusion. CONCLUSIONS: Lack of endogenous acute-phase SAA protects against experimental AAA through a mechanism that may involve reduced matrix metalloproteinase-2 activity.


Assuntos
Angiotensina II/farmacologia , Aneurisma da Aorta Abdominal/prevenção & controle , Apolipoproteínas E/deficiência , Metaloproteinase 2 da Matriz/metabolismo , Proteína Amiloide A Sérica/deficiência , Animais , Aneurisma da Aorta Abdominal/patologia , Biomarcadores/sangue , Modelos Animais de Doenças , Elastina/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória , Sensibilidade e Especificidade , Proteína Amiloide A Sérica/metabolismo
12.
Arterioscler Thromb Vasc Biol ; 34(9): 1910-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25060793

RESUMO

OBJECTIVE: Phospholipid transfer protein (PLTP), which binds phospholipids and facilitates their transfer between lipoproteins in plasma, plays a key role in lipoprotein remodeling, but its influence on nascent high-density lipoprotein (HDL) formation is not known. The effect of PLTP overexpression on apolipoprotein A-I (apoA-I) lipidation by primary mouse hepatocytes was investigated. APPROACH AND RESULTS: Overexpression of PLTP through an adenoviral vector markedly affected the amount and size of lipidated apoA-I species that were produced in hepatocytes in a dose-dependent manner, ultimately generating particles that were <7.1 nm but larger than lipid-free apoA-I. These <7.1-nm small particles generated in the presence of overexpressed PLTP were incorporated into mature HDL particles more rapidly than apoA-I both in vivo and in vitro and were less rapidly cleared from mouse plasma than lipid-free apoA-I. The <7.1-nm particles promoted both cellular cholesterol and phospholipid efflux in an ATP-binding cassette transporter A1-dependent manner, similar to apoA-I in the presence of PLTP. Lipid-free apoA-I had a greater efflux capacity in the presence of PLTP than in the absence of PLTP, suggesting that PLTP may promote ATP-binding cassette transporter A1-mediated cholesterol and phospholipid efflux. These results indicate that PLTP alters nascent HDL formation by modulating the lipidated species and by promoting the initial process of apoA-I lipidation. CONCLUSIONS: Our findings suggest that PLTP exerts significant effects on apoA-I lipidation and nascent HDL biogenesis in hepatocytes by promoting ATP-binding cassette transporter A1-mediated lipid efflux and the remodeling of nascent HDL particles.


Assuntos
Apolipoproteína A-I/metabolismo , Hepatócitos/metabolismo , Proteínas de Transferência de Fosfolipídeos/fisiologia , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Adenoviridae/genética , Animais , Apolipoproteína A-I/biossíntese , Células Cultivadas , Colesterol/metabolismo , Regulação da Expressão Gênica , Vetores Genéticos , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfolipídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 34(2): 255-61, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24265416

RESUMO

OBJECTIVE: Although elevated plasma concentrations of serum amyloid A (SAA) are associated strongly with increased risk for atherosclerotic cardiovascular disease in humans, the role of SAA in the pathogenesis of lesion formation remains obscure. Our goal was to determine the impact of SAA deficiency on atherosclerosis in hypercholesterolemic mice. APPROACH AND RESULTS: Apolipoprotein E-deficient (apoE(-/-)) mice, either wild type or deficient in both major acute phase SAA isoforms, SAA1.1 and SAA2.1, were fed a normal rodent diet for 50 weeks. Female mice, but not male apoE-/- mice deficient in SAA1.1 and SAA2.1, had a modest increase (22%; P≤0.05) in plasma cholesterol concentrations and a 53% increase in adipose mass compared with apoE-/- mice expressing SAA1.1 and SAA2.1 that did not affect the plasma cytokine levels or the expression of adipose tissue inflammatory markers. SAA deficiency did not affect lipoprotein cholesterol distributions or plasma triglyceride concentrations in either male or female mice. Atherosclerotic lesion areas measured on the intimal surfaces of the arch, thoracic, and abdominal regions were not significantly different between apoE-/- mice deficient in SAA1.1 and SAA2.1 and apoE-/- mice expressing SAA1.1 and SAA2.1 in either sex. To accelerate lesion formation, mice were fed a Western diet for 12 weeks. SAA deficiency had effect neither on diet-induced alterations in plasma cholesterol, triglyceride, or cytokine concentrations nor on aortic atherosclerotic lesion areas in either male or female mice. In addition, SAA deficiency in male mice had no effect on lesion areas or macrophage accumulation in the aortic roots. CONCLUSIONS: The absence of endogenous SAA1.1 and 2.1 does not affect atherosclerotic lipid deposition in apolipoprotein E-deficient mice fed either normal or Western diets.


Assuntos
Doenças da Aorta/metabolismo , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Proteína Amiloide A Sérica/deficiência , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Adiposidade , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/fisiopatologia , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Colesterol/sangue , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Hipercolesterolemia/complicações , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Mediadores da Inflamação/sangue , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Amiloide A Sérica/genética , Fatores de Tempo , Triglicerídeos/sangue
15.
Cytokine ; 61(2): 506-12, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23165195

RESUMO

SAA has been shown to have potential proinflammatory properties in inflammatory diseases such as atherosclerosis. These include induction of tumor necrosis factor α, interleukin-6, and monocyte chemoattractant protein 1 in vitro. However, concern has been raised that these effects might be due to use of recombinant SAA with low level of endotoxin contaminants or its non-native forms. Therefore, physiological relevance has not been fully elucidated. In this study, we investigated the role of SAA in the production of inflammatory cytokines. Stimulation of mouse monocyte J774 cells with lipid-poor recombinant human SAA and purified SAA derived from cardiac surgery patients, but not ApoA-I and ApoA-II, elicited pro-inflammatory cytokines like granulocyte colony stimulating factor (G-CSF). However, HDL-associated SAA failed to stimulate production of these cytokines. Using neutralizing antibodies against toll like receptor (TLR) 2 and 4, we could evaluate that TLR 2 is responsible for G-CSF production by lipid-poor SAA. To confirm these data in vivo, we expressed mouse SAA in SAA deficient C57BL/6 mice using an adenoviral vector. G-CSF was identically expressed in SAA-Adenoviral infected mice as well as in control null-Adenoviral mice at the early time points (4-8h) and could not be detected in plasma 24h after infection when plasma SAA levels were maximally elevated, indicating that adenoviral vector rather than SAA affected G-CSF levels. Taken together, our findings suggest that lipid-poor SAA, but not HDL-associated SAA, stimulates G-CSF production and this stimulation is mediated through TLR 2 in J774 cells. However, its physiological role in vivo remains ambiguous.


Assuntos
Citocinas/biossíntese , Proteína Amiloide A Sérica/metabolismo , Animais , Apolipoproteína A-I/metabolismo , Apolipoproteína A-II/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Humanos , Lipopolissacarídeos , Lipoproteínas HDL/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Substâncias Protetoras/farmacologia , Proteína Amiloide A Sérica/deficiência , Receptor 2 Toll-Like/metabolismo
16.
Am J Pathol ; 181(3): 1088-98, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22813854

RESUMO

Abdominal aortic aneurysms (AAAs) and heart failure are complex life-threatening diseases whose etiology is not completely understood. In this study, we investigated whether deficiency of group V secretory phospholipase A(2) (GV sPLA(2)) protects from experimental AAA. The impact of GV sPLA(2) deficiency on angiotensin (Ang) II-induced cardiac fibrosis was also investigated. Apolipoprotein E (apoE)(-/-) mice and apoE(-/-) mice lacking GV sPLA(2) (GV DKO) were infused with 1000 ng/kg per minute Ang II for up to 28 days. Increases in systolic blood pressure, plasma aldosterone level, and urinary and heart prostanoids were similar in apoE(-/-) and GV DKO mice after Ang II infusion. The incidence of aortic rupture in Ang II-infused GV DKO mice (10%) was significantly reduced compared with apoE(-/-) mice (29.4%). Although the incidence of AAA in GV DKO mice (81.3%) and apoE(-/-) mice (100%) was similar, the mean percentage increase in maximal luminal diameter of abdominal aortas was significantly smaller in GV DKO mice (68.5% ± 7.7%) compared with apoE(-/-) mice (92.6% ± 8.3%). Deficiency of GV sPLA(2) resulted in increased Ang II-induced cardiac fibrosis that was most pronounced in perivascular regions. Perivascular collagen, visualized by picrosirius red staining, was associated with increased TUNEL staining and increased immunopositivity for macrophages and myofibroblasts and nicotinamide adenine dinucleotide phosphate oxidase (NOX)-2 and NOX-4, respectively. Our findings indicate that GV sPLA(2) modulates pathological responses to Ang II, with different outcomes for AAA and cardiac fibrosis.


Assuntos
Aneurisma da Aorta Abdominal/enzimologia , Aneurisma da Aorta Abdominal/patologia , Apolipoproteínas E/deficiência , Progressão da Doença , Fosfolipases A2 do Grupo V/metabolismo , Miocárdio/patologia , Angiotensina II/administração & dosagem , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Ruptura Aórtica/enzimologia , Ruptura Aórtica/patologia , Apolipoproteínas E/metabolismo , Apoptose/efeitos dos fármacos , Colágeno/metabolismo , Fibrose , Fosfolipases A2 do Grupo V/deficiência , Imuno-Histoquímica , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/enzimologia , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/metabolismo , Prostaglandinas/metabolismo
17.
J Lipid Res ; 52(12): 2255-2261, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21957202

RESUMO

Inflammation is associated with significant decreases in plasma HDL-cholesterol (HDL-C) and apoA-I levels. Endothelial lipase (EL) is known to be an important determinant of HDL-C in mice and in humans and is upregulated during inflammation. In this study, we investigated whether serum amyloid A (SAA), an HDL apolipoprotein highly induced during inflammation, alters the ability of EL to metabolize HDL. We determined that EL hydrolyzes SAA-enriched HDL in vitro without liberating lipid-free apoA-I. Coexpression of SAA and EL in mice by adenoviral vector produced a significantly greater reduction in HDL-C and apoA-I than a corresponding level of expression of either SAA or EL alone. The loss of HDL occurred without any evidence of HDL remodeling to smaller particles that would be expected to have more rapid turnover. Studies with primary hepatocytes demonstrated that coexpression of SAA and EL markedly impeded ABCA1-mediated lipidation of apoA-I to form nascent HDL. Our findings suggest that a reduction in nascent HDL formation may be partly responsible for reduced HDL-C during inflammation when both EL and SAA are known to be upregulated.


Assuntos
Hepatócitos/metabolismo , Lipase/metabolismo , Lipoproteínas HDL/metabolismo , Proteína Amiloide A Sérica/metabolismo , Animais , Células COS , Chlorocebus aethiops , HDL-Colesterol/metabolismo , Humanos , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
18.
J Immunol ; 187(1): 482-9, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21622863

RESUMO

Secretory phospholipase A(2)s (sPLA(2)) hydrolyze glycerophospholipids to liberate lysophospholipids and free fatty acids. Although group X (GX) sPLA(2) is recognized as the most potent mammalian sPLA(2) in vitro, its precise physiological function(s) remains unclear. We recently reported that GX sPLA(2) suppresses activation of the liver X receptor in macrophages, resulting in reduced expression of liver X receptor-responsive genes including ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1), and a consequent decrease in cellular cholesterol efflux and increase in cellular cholesterol content (Shridas et al. 2010. Arterioscler. Thromb. Vasc. Biol. 30: 2014-2021). In this study, we provide evidence that GX sPLA(2) modulates macrophage inflammatory responses by altering cellular cholesterol homeostasis. Transgenic expression or exogenous addition of GX sPLA(2) resulted in a significantly higher induction of TNF-α, IL-6, and cyclooxygenase-2 in J774 macrophage-like cells in response to LPS. This effect required GX sPLA(2) catalytic activity, and was abolished in macrophages that lack either TLR4 or MyD88. The hypersensitivity to LPS in cells overexpressing GX sPLA(2) was reversed when cellular free cholesterol was normalized using cyclodextrin. Consistent with results from gain-of-function studies, peritoneal macrophages from GX sPLA(2)-deficient mice exhibited a significantly dampened response to LPS. Plasma concentrations of inflammatory cytokines were significantly lower in GX sPLA(2)-deficient mice compared with wild-type mice after LPS administration. Thus, GX sPLA(2) amplifies signaling through TLR4 by a mechanism that is dependent on its catalytic activity. Our data indicate this effect is mediated through alterations in plasma membrane free cholesterol and lipid raft content.


Assuntos
Fosfolipases A2 do Grupo X/fisiologia , Macrófagos/enzimologia , Macrófagos/imunologia , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/fisiologia , Animais , Linhagem Celular , Colesterol/metabolismo , Feminino , Fosfolipases A2 do Grupo X/deficiência , Fosfolipases A2 do Grupo X/genética , Homeostase/genética , Homeostase/imunologia , Lipopolissacarídeos/fisiologia , Macrófagos/patologia , Masculino , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/genética
19.
Atherosclerosis ; 217(1): 106-12, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21481393

RESUMO

OBJECTIVE: To investigate the mechanisms by which macrophage scavenger receptor BI (SR-BI) regulates macrophage cholesterol homeostasis and protects against atherosclerosis. METHODS AND RESULTS: The expression and function of SR-BI was investigated in cultured mouse bone marrow-derived macrophages (BMM). SR-BI, the other scavenger receptors SRA and CD36 and the ATP-binding cassette transporters ABCA1 and ABCG1 were each distinctly regulated during BMM differentiation. SR-BI levels increased transiently to significant levels during culture. SR-BI expression in BMM was reversibly down-regulated by lipid loading with modified LDL; SR-BI was shown to be present both on the cell surface as well as intracellularly. BMM exhibited selective HDL CE uptake, however, this was not dependent on SR-BI or another potential candidate glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1 (GPIHBP1). SR-BI played a significant role in facilitating bidirectional cholesterol flux in non lipid-loaded cells. SR-BI expression enhanced both cell cholesterol efflux and cholesterol influx from HDL, but did not lead to altered cellular cholesterol mass. SR-BI-dependent efflux occurred to larger HDL particles but not to smaller HDL(3). Following cholesterol loading, ABCA1 and ABCG1 were up-regulated and served as the major contributors to cholesterol efflux, while SR-BI expression was down-regulated. CONCLUSION: Our results suggest that SR-BI plays a significant role in macrophage cholesterol flux that may partly account for its effects on atherogenesis.


Assuntos
Antígenos CD36/metabolismo , Metabolismo dos Lipídeos , Macrófagos/citologia , Animais , Aterosclerose/metabolismo , Biotinilação , Colesterol/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Homeostase , Lipoproteínas/metabolismo , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Lipoproteínas/metabolismo
20.
J Lipid Res ; 52(2): 345-53, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21138980

RESUMO

ATP binding cassette transporter G1 (ABCG1) mediates the transport of cellular cholesterol to HDL, and it plays a key role in maintaining macrophage cholesterol homeostasis. During inflammation, HDL undergoes substantial remodeling, acquiring lipid changes and serum amyloid A (SAA) as a major apolipoprotein. In the current study, we investigated whether remodeling of HDL that occurs during acute inflammation impacts ABCG1-dependent efflux. Our data indicate that lipid free SAA acts similarly to apolipoprotein A-I (apoA-I) in mediating sequential efflux from ABCA1 and ABCG1. Compared with normal mouse HDL, acute phase (AP) mouse HDL containing SAA exhibited a modest but significant 17% increase in ABCG1-dependent efflux. Interestingly, AP HDL isolated from mice lacking SAA (SAAKO mice) was even more effective in promoting ABCG1 efflux. Hydrolysis with Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) significantly reduced the ability of AP HDL from SAAKO mice to serve as a substrate for ABCG1-mediated cholesterol transfer, indicating that phospholipid (PL) enrichment, and not the presence of SAA, is responsible for alterations in efflux. AP human HDL, which is not PL-enriched, was somewhat less effective in mediating ABCG1-dependent efflux compared with normal human HDL. Our data indicate that inflammatory remodeling of HDL impacts ABCG1-dependent efflux independent of SAA.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Reação de Fase Aguda/fisiopatologia , Colesterol/metabolismo , Lipoproteínas/metabolismo , Proteína Amiloide A Sérica/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Apolipoproteína A-I/metabolismo , Células Cultivadas , Cricetinae , Humanos , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA